Skip to content

%% Limit Derivative %%

L'Hôpital's Rule

Tags
Cegep1
Calculus
Word count
290 words
Reading time
2 minutes

Suppose f and g are differentiable functions and that limxaf(x)g(x) evaluates to 00 or , then

limxaf(x)g(x)=limxaf(x)g(x)

Evaluation

00 or

Apply L'Hôpital's Rule, several times if needed.
If the derivative loops, L'Hôpital's Rule cannot be used.

[!example]- Evaluate the limit limx0+lnx1+(lnx)2.

limx0+lnx1+(lnx)2, x=0,=limx0+12lnx= 0

[!example]- Evaluate the limit limx(lnxx1).

limx(lnxx1), x, =limx(x1(lnxx11))

On the side:

limxlnxx1=limx1x12x1=limx1x2x1=limx2x1x=limx2x11xx=limx211xx=0

Back to the limit,

limx(x1(lnxx11))=limxx1(limxlnxx1limx1)=(01)=

Contributors

Changelog